Author Archives: ndholmes

The Electrical Cabinet Lives!

Work has been keeping me insanely busy lately, but I have gotten the start of the electrical cabinet installed.  So far, it’s mostly the three power supplies for the DCC boosters and the fourth power supply for the auxiliary power bus, the DCC system, and one set of DCC breakers, but it’s a start.  And it’s enough to power up the helix and Nizina, along with bringing up the programming track.

The wiring is still a bit messy, but that’ll get cleaned up before it’s final.  I just figure there’s no sense lacing things together before all the wires are in place.

electricalcab-5nov2014

Nizina Yard

In 1915, the Alaskan Engineering Commission presented a report to then president Woodrow Wilson concerning the potential expansion of railroads within the Territory of Alaska.  If you want to read the report yourself, Google Books has it scanned and online.  Part of this was an exploration of potentially expansions to the Copper River & Northwestern, none of which were ever actually built.

The report proposes two branches from near McCarthy to other nearby mining districts.  One, a 14 mile branch, would extend around to the east side of Bonanza Ridge (the main Kennecott Mine was on the west side) up McCarthy Creek to the Mother Lode mine.  The other, a ~17 mile line, was proposed from McCarthy further southeast to the gold mining district along the Nizina River.

Because the Mother Lode Mine was on the opposite side of the ridge from the rest of the mines, eventually the tunnels were interconnected.  Mother Lode ore was sent through the Bonanza Mine to get it to the other side of the mountain, and then down the trams to Kennecott to be loaded.  There wouldn’t have been a reason to extend the railway around the backside of the ridge for it.  More interesting would be the Green Butte and Nicolai mines, which existed on the east side of McCarthy Creek, might have been able to use rail service.

The Nizina Branch idea is more intriguing, however.  Even while there was active mining at Kennicott, there was placer gold mining going on at Dan Creek, southeast of McCarthy and on the opposite side of the Nizina River.  Additionally, copper prospects had been described just a few more miles up the Nizina and Chitistone Rivers, along Glacier Creek.  So it’s slightly plausible that – should copper mining have survived in the district – that additional mines would have been developed on these prospects.  I don’t proclaim to be any sort of expert (or even novice of any note) in this area, but the US Geological Survey has a 1943/44 report on mining prospects in the Nizina District available as a PDF.

The short version is that I needed more traffic at the north end of the line to keep operations on the layout interesting.  I also wanted a test track above my workbench that I could use for working on equipment and programming DCC decoders.  Given that the workbench is just across the wall from McCarthy and Cordova, and that McCarthy was at just about the right height for a workbench branch, I decided the “Nizina Branch” would be born.  It will serve as staging for one empty coming up and one load going down each operating session.

The yard is three tracks wide, with the one nearest the edge being the DCC programming track in addition to storage.  Given that this is all just staging trackage, I used some leftover Atlas code 55 flex and turnouts that I had lying around.  You may notice an odd bit of 3-rail track near the end, as if I’d decided to model dual gauge.  Since I do spend a decent amount of time working on HO models for other folks, I needed the programming track to be compatible with both HO and N scale equipment.  So, using a few PC board ties and some extra rail, I built a dual HO/N scale programming section.  And yes, that’s a BC Rail B39-8 running around.  It won’t be part of the CRNW’s roster, but much like my IAIS ES44ACs, I’m rather fond of it and you’ll probably see it running around in “unofficial” layout photos.

The switch machines are, of course, my MRServo design.  They’re completely open source, but available from Iowa Scaled Engineering if you want to buy some.  The wiring is still a bit rough – I haven’t gotten it all finalized yet.  I was just happy to get the track power and programming track lines run back to the electrical panel with my limited time this week.

 

Movin’ On Up… to 24VDC

I know, I haven’t posted many updates lately, but there will be about four coming in the next few days.  There’s been lots of work, but little time to properly write things up.

I’ve decided to rev the LED lighting PWM boards again to accept a 24VDC input. 24V offers the advantage of more efficient large power supplies (the Mean Well RSP-2000-24 being the one I plan to use) and half as much current.  That means smaller wires, less heat loss, and less inductive kick.  While I could always put two 12V strips of the warm or cool white in series to make a 24V load, the RGB strip was always the problem, because there was no way to wire those in series.  About a month ago I found a 24V RGB strip supplier, so I rev’d the control board to handle 24V.

I assembled the prototype on Monday and tested it last night.  The results are spectacular.  It works flawlessly.  With confirmation it’s going to work, I’ll probably start putting up the final light bars before the end of the year.  I’ll also post the control board design this weekend.

A Question of DCC

No, no, not the choice of DC or DCC.  That’s not a question around here.  There’s no way I could possibly hope to operate the CRNW on DC.  The real question is “what kind of DCC?”

I’ve been a Lenz guy for the last decade, and overall I like the fact it’s reliable, well-built, and works well.  Plus the throttles have a very solid, professionally-built feel to them.  That said, Lenz doesn’t offer a wireless throttle, and their products haven’t changed since I bought my system 10 years ago.   (CVP Products does offer wireless Lenz throttles that do work quite well, however.)  Wireless throttles are a must – there’s nothing I hate more than tripping over other operators trying to get to the next throttle jack.  On the up side, the system does everything I really need and – best of all – the throttle bus (XpressNet) is an open standard and fully documented.  This is a huge deal to me, as I tend to build a lot of my own hardware and I’m a rather big open source software and hardware proponent.  I don’t like being boxed in to any given vendor’s products, on the off chance they go out of business.  Because Lenz has an open, well-specified bus, I can pretty easily build my own wireless throttles.   if I wanted.

On the down side of sticking with Lenz is the facct they haven’t really done anything in the last ten years in the base station or throttle market.  Plus, their US market share has seemed – in my experience – to be slipping since Debbie Ames retired as their North American rep.   While, as I pointed out above, I could build my own throttles, I don’t really want to right now.  I have a layout that needs lots of work to get to operational, and I don’t want to get bogged down playing with electronics.

Having played with an NCE system at a layout open house several weeks ago and heard nothing but good things about them for years, I finally broke down today and ordered an NCE Power Pro radio starter set. My plan is to run the NCE system for at least the first phase of the CRNW’s life.  If it works well, it’ll probably stay for a good number of years, or possibly for the life of the layout. Expect a “first impressions” look at it in a few weeks.

(BTW, if anybody’s looking, Brooklyn Locomotive Works has an incredible deal on both the wired and wireless versions right now.)  I also ordered a Cab06pr from MB Klein, since BLW doesn’t seem to have them.

I don’t plan to get rid of my Lenz system.  I still like it, and some day may get around to building compatible bits for it.  For that matter, part of me really wants to design/build my own DCC system based on MRBus, and I have no doubt I could do it.  But now, in the formative years of a new layout, doesn’t seem to be the right time to pursue such interests.

The Helix In Action

In between other projects tonight, I added another half-turn to the helix.  Figured I might as well enjoy it a bit as well, so ran a quick test train – just one of the SD60Ms (future CRNW 600), a half-dozen ore jennies, and a boxcar that was sitting on my bench anyway.  Figured out that an Atlas SD60M is good for about 20 cars on the 2.5% grade, based on a test I didn’t video.

Starting Trackwork on the Helix

Between Abercrombie Canyon and Chitina lies nearly 70 miles of some of the most remote, inaccessible railroad in North America.  Twisting and turning along the west bank of the Copper River, these miles would offer a great deal of scenic value, but little operational potential.  There was no industry through this stretch, and damned few people at all.  Those that were there consisted largely of native people, fishermen (largely in the lower canyon – there was once a salmon cannery around Abercrombie at MP 55), railroad workers, and of course the random outdoorsman.  From a modeling perspective, it would be miles and miles of track on a narrow shelf, perched between the mountainside and the swirling blue-grey waters of the Copper.  So,  as I needed somewhere to shift between decks, I chose these remote 70 miles to compress into the great helix.

The structure will be a 20 inch radius, 8 turn helix connecting the lower deck at 35 inches above the floor with the upper level at 60 inches.  This comes out to a grade of just under 2.5%. Inspired by other designs I’ve seen lately, I chose to use threaded rod as the main vertical supports.  It’s simple to install, requires no precision cutting on my part, and allows for adjustment after installation.

Threaded Helix SupportsThe basic design would consist of 8 sets of rods, each set 45 degrees apart and spaced by about 3 inches.  These would be mounted into a lower plywood platform and extend upward through each helix level. Thanks in part to the explosion of 3D printers on the market (which often use threaded rod for linear drives), 3/16-16 threaded rod is abundant and cheap. I picked up 16 rods, each 36″ long, from eBay for something like $40 shipped.  Nuts (part 90473A031) and washers (part 90108A032) were ordered from McMaster-Carr.

Helix 1/4 turn segmentThe roadbed itself would consist of 90 degree segments (quarter turn) cut from 1/4″ plywood, with ears at the halfway point for connecting with the rods.  Two layers of these segments would be installed for the track bed, 45 degrees offset from each other.   The segments are glued together using standard wood glue and clamped while they dry.  For the threaded rods, 5/8″ holes were drilled (very oversize for the 3/16″ rod) so that there was plenty of adjustment room.  I specifically chose large flat washers so that I could have large holes for fine-tuning the alignment.  Even though only the upper or lower roadbed segment is attached at each set of rods, this still provides a very strong roadbed once the glue sets and it’s bolted down.

IMG_1070 Starting the helix IMG_1067

 

 

 

Here’s a handy tip – turns out spinning a few Homemade nut spinnerhundred nuts down a few feet of threaded rod is absolutely no fun.  In fact, it’s downright maddeningly slow.  Fortunately, there’s a better, faster way to do it.  Just get a 4″ buffing wheel (meant for a bench grinder, maybe $5 at a home improvement store) and a short piece of threaded rod.  Put a big washer on each side and a couple nuts, pop that sucker in a drill, and you have a nut turner.  Makes very short work of spinning each nut down the rod.  About the only gotcha is the occasional string that gets loose from the buffing wheel and jams the nut, but that’s easily cleared with just your hand.

After that, it’s all just one step at a time.  Add a couple segments, then go back and lay track before you cover up a helix turn with the next one.  I typically have been keeping the track about 1/2 turn behind the benchwork, so that I can alternate between setting benchwork segments and laying track.

IMG_1080 IMG_1079To keep the grade constant, I built this handy grade measuring device out of a $3 Harbor Freight level.  Over a span of 8″, a 2.5% grade will rise 0.2″.  So, I had some hex cap screws lying around that had heads 0.2″ high.  I drilled a hole in one end of the level and threaded in a cap screw.  Ta da!  Almost a perfect 2.5% grade level.  I just place it halfway between each set of rods, progressively working up the helix as I build the roadbed.  I keep checking that the distance from one level to the next is a consistent 3-1/8″, but so far I haven’t had any issues using just the level method.  Once each piece is determined to be the right grade, I firmly set the nuts against the washers and the roadbed.

Helix Progress - 30 Aug 2014As of when I called a night tonight, this was the status of the helix – about halfway through the third turn.  The roadbed and track are both held on with my usual method of DAP Weldwood contact cement.  I’m out of plywood segments that have been cut, so I’m calling it a night at this point.  I’m taking Labor Day off to take in a baseball game (and then some – the Rockies still have three make-up innings against the Giants from a rained-out game last May, so tomorrow will be at least twelve innings).   Regardless, it’ll be a break from the basement.  I do plan to do some pull tests using a couple SD60Ms and ore cars to make sure we’re in the ballpark – no pun intended – of having the right grade for the trains I plan to run.

Influences

If I had to list the two layouts and modellers that have influenced my concept of modelling more than any others, it would have to be Tony Koester’s Allegheny Midland and Eric Brooman’s Utah Belt.  One of these days I’ll add a post about the influence of the AM, as I really credit the two part Model Railroader article in Dec 1987 / Jan 1988 as what hooked me on the idea of an operations-oriented, proto-freelanced layout.  But for now, let’s concentrate on the Utah Belt.

Brooman’s beautiful Utah Belt was the first layout to put the idea in my head of a modern proto-freelanced railroad that moved forward with time.  The AM seemed to move forward or back in jumps whenever Tony would get the itch to adjust the era, whereas the Utah Belt moves forward relatively linearly.  New power shows up, aging power fades to local and helper service, and old power fades from the roster.  It’s all nicely consistent and feels like what a real road would be doing at that time.  Plus, the way Eric captures the deserts and mountains of the Four Corners region is quite spectacular.

I never thought I would have the chance to see the UB in person.  I was at the St. Louis Railroad Prototype Modelers meet several weeks back with Iowa Scaled Engineering (otherwise known as “company I founded to sell stuff I’m building for somebody’s layout anyway”), and was contemplating what to do Friday night.  It was about that moment I saw the layout tour line-up for the evening, and noticed the UB at the top.  This was clearly a must-do, and anything else could be cast aside.

As a note, this is (at least) the second incarnation of the UB.   The new one is only approximately 40’x22′ (the first one was considerably smaller, apparently), but you’d never know it from the photos you see of the layout.  The layout is set up such that it just feels far more vast, capturing the desolate country it models.  Plus, it also has a vast number of photo angles available that all capture very unique scenes.

I forgot my camera, so sadly all I had on me was my cell phone.  Still, I thought I’d share some of the less blurry images with you.

Mr. Brooman, if you happen to read this – I can’t thank you enough for opening your home and your layout to visitors.  It was an honor to visit and, without a doubt, the highlight of the trip for me.

 

Benchwork Done!

At 2208h today, Sunday, 17 Aug 2014, benchwork for the two track levels is officially complete.  Woo hoo!  The only major benchwork yet to go is the upper lighting valance deck over Chitina.  Right now it ends above the third Copper crossing.  Unfortunately, I have a great deal to do for my day job this week, so I’m not anticipating finishing that up.  However, next weekend is largely open, so I should be able to start on the helix and getting the first track down.

I’m not posting any pictures right now because – due to construction and moving things out of the way – my basement looks like the apocalypse struck.  Once I get things tidied back up, I’ll post pictures.

One Year In

Today marks the one year anniversary of my efforts.  It was July 30, 2014, that I officially registered copperriverrailway.com as an effort to document my progress towards bringing the CR&NW alive again in my basement.

That said, I’m behind schedule.  Shocking.

I do have good news, however.  The base benchwork is probably a day’s work away from being complete.  I had hoped to announce today that as of a year in, I’d finally finished it, but I had to go help a friend of mine with her networking issues last night.  So finishing the final framing went on the back burner.  Hopefully by the end of the weekend I can officially announce that benchwork is done and we’re on to roadbed and trackwork!

The Katalla Branch

Ever since I drew the original plans a year ago, I’d always had the idea that – should the CRNW have survived – that there might be a branch to Katalla.  As those familiar with the CRNW know, at one point Katalla was to be the terminus of the CRNW.  It had a key advantage for a burgeoning mining industry – nearby coal and oil reserves.  The town lacked one key feature, however – a natural deep-water harbor.

In reality, Katalla’s demise began with the federal government (under President Teddy Roosevelt) withdrawing public lands from coal mining in 1906.  Shortly thereafter, the lands were closed to timber and oil extraction as well.   Then, in November 1907, all of the Katalla dock and breakwater facilities were destroyed in a series of early winter storms.  With no available resources – save a single 160-acre oil field – and no facilities, the CRNW packed up and moved its terminal to Cordova.   Katalla would get a refinery to process the limited (but apparently high quality) crude it produced, but little other industry developed to sustain the town.  By 1933, when the refinery accidentally burned, there were reportedly only about 100 people still living in town.  However, that was the end – after 1933, Katalla would fade into history.

In 1971, however, new hope arose for industry in the Katalla area.  Thanks to the Alaska Native Claims Settlement Act and its effort to compensate the Alaska native peoples for their losses, the Bering River bituminous fields and the Carbon Mountain anthracite fields passed to the Chugach Alaska Corporation, one of the regional corporations set up by the ANCSA to administer lands transferred back to the native people.  In 1991, the rights to develop the field were sold to the Korean Alaska Development Corporation as part of CAC’s Chapter 11 bankruptcy proceedings.  KADCO has yet to do anything with these rights, and in fact several conservation interests have discussed buying them to prevent any future mine.

Further, the CAC obtained rights to try for commercially-exploitable quantities of oil and gas in the Katalla Field in 1982.  However, these rights were temporary, and expired at the end of 2004 unless a commercial well could be put in production.

In reality, no commercially viable oil well materialized, and the coal fields remain untouched since 1906.  However, with the idea that my modern day CRNW could provide both a customer and a transportation solution, I’m going to explore the idea that at least the coal fields were developed at a small scale.  Local coal seems a plausible energy source for both my processing plant at Eyak, the town of Cordova (which in reality today draws its power from both hydro and a large diesel plant), and the mine operation itself.  Plus, having another local job to run adds more operating interest than just the ore trains and wayfreights plying the mainline.

As much as I’d like the branch to have been developed in the 1920s or 1930s, I’d have to bend history around too much to make that plausible. If the Guggenheims and JP Morgan couldn’t get the Department of the Interior to change their mind about resource extraction in the 1910-1930 era, there’s no plausible reason to believe that it would have happened between 1930 and the transfer of the coal loads to the CAC in 1972.  So, in my version of the world, the Katalla Branch would have been developed in about 1972, once the dust had settled on the ANCSA.

One of the original 1913 Alaska Railroad Commission reports indicates that two routes were considered from the CRNW to the Bering coalfields.  Both would start near the Miles Glacier Bridge.  One route would run around the coastline to Katalla and then back up the Bering River.  The other (shorter) route would run up the Martin River delta, cross over near the foot of the Martin River Glacier, and then pass over some steep grades (estimated at 1.7-2%) and around the western shore of Lake Charlotte.  From there, it would reach the mines and could be extended down towards Katalla.  By 1972, with modern motive power, construction techniques, and the recently-reinforced knowledge of the powerful damage earthquakes could transform the coastline, I have to assume that the the mountain route via Lake Charlotte would have been used.  Plus, there was no reason for the Katalla Branch to actually go to Katalla by that point, as there wasn’t anything left of the town.

My other problem is rather pragmatic – I sketched in the Katalla Branch coming off the mainline between Alaganik and the Miles Glacier Bridge.  In reality, it would have diverged in this area, coming off the mainline after it had crossed the braided tributaries of the Copper on the north/east side of Long Island.  The problem is that’s located at the end of the peninsula on my layout, and I can’t come up with a good way to helix the track down at that point.  There’s just too much benchwork needed to support the peninsula to start putting holes in it.

I don’t intend trains coming off the branch to ever be particularly long – maybe 8 cars plus engines and caboose, to be roughly in proportion to mainline trains at 20ish cars.  Plus, back-of-the-cocktail-napkin calculations show that creating 200 tons of pure copper a day via electrowinning would take roughly 4-5 cars of coal per day, given typical generation efficiencies.  So if I could pull 8 cars out every op session, that seems reasonable to feed the whole shebang.

Enter the train elevator.  Basically a strip of track 55-60 inches in length, mounted to a wood carriage that rides on two linear rails.  A pair of stepper motors and jackscrews raise and lower the track between the two decks.  I intend to make it 99% automated, so that the train pulls in, power gets cut when it hits a sensor, and the elevator takes it to the other level.  From an operator’s point of view, they’ll leave Katalla Junction and disappear into the trees, and a minute or so later pop out of a summit tunnel or cut on the very lowest deck.

There’s absolutely nothing like it in the prototype.  I know and accept that.  I wouldn’t want one on the mainline – the main decks will be connected via a proper helix – but it seems an acceptable way to add time (otherwise the supposedly 38+ mile branch would only be maybe 15 feet long) and an easy connection to what amounts to a long industrial spur.  It gives me a plausible connection to local fuel producer, and a reason to run another local job every op session or two.

I’ve got the rails, the screws, and the stepper motors – now it’s just a matter of getting all the other widgets (screws, brackets, etc.), designing some controls, and testing it out.  I’ll let you know what comes of it.